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Abstract— In practical field like engineering, biological and other control systems, which deals with a robust PID controller, time delay is 
always kept in consideration. While controlling a process various uncertainties may arise, which can be resolved by using a feedback 
system to obtain a desired result. Due to application of several Sensors & Transducers, time delay may occur which reduces the 
performance of the system. The time delay may be also generated due to communication delay of various parts of system. System 
oscillation or instability may arise in the applied system due to time delays generated in the controllers, which may cause uncertainties in 
the system. 
That’s why a lot of literatures presented on time delayed processes for system stabilizing, analysis of stability and controlling time delay 
system are available. In the first order controller, controlling method is very simple and it can easily be implemented practically as these 
lower order controllers can reduce the controller complexities, so we can stabilize a higher order process or complex plant by using various 
lower order controllers. While designing a controller, system stabilization is the initial requirement which stabilizes all the PID parameters 
like unit step response, peak overshoot, rise time, settling time etc. Some alterations are made in the process plant where we can apply 
our proposed method to any first order controller to obtain a stabilized output. As an outcome, the result of this research work can also be 
applied for any experimental or industrial applications. 
Index Terms— PID controller, Linear time invariant (LTI) system, Delay Time, Stability Region, Robustness, SCADA system. 
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 1 INTRODUCTION                                                                     

n control theory, a controller is a device, used in  electrical 
or mechanical field in association with hydraulic, 
pneumatic or electronic techniques  in combination, but 

more recently, in the form of a microprocessor or computer, 
which monitors and physically alters the operating conditions 
of a given dynamical system.  
A PID (Proportional Integral Derivative) controller is the most 
commonly used instrument in industrial control applications, 
which can be used for regulation of speed, temperature, flow, 
pressure and other process variables. Field mounted PID 
controllers can be placed close to the sensors or the regulating 
devices can be monitored centrally using a SCADA system, 
e.g. a temperature Controller using a Digital PID controller.  
PID controller shows robust stability in the real industrial 
process. Classic PID controller is better suited to precise 
mathematical models having poor self-adaptive nature and it 
is hard to obtain robust stability region which is caused by the 
external interruption and uncertainty.  
As we know that almost all practical working methods include 
uncertainties so, designing robust modified PID controller 
with uncertainties is more important. Hence, in this paper we 
have explained the characteristics of Robust PID controller for 
a Time Delay System.  
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2 THEORETICAL  BACKGROUND 
A PID controller (sometimes called a three term controller) 
reads the sensor signal, normally from a thermocouple or 
RTD, and converts the measurement to engineering units e.g. 
Degrees C. It then subtracts the measurement from a desired 
set-point to determine an error. The error is acted upon by the 
three (P, I & D) terms simultaneously: 
 
Proportional (Gain) 
The error is multiplied by a negative (for reverse action) 
proportional constant P, and added to the current output. P 
represents the band cross over such that a controller's output 
is proportional to the error of the system e.g. for a heater, a 
controller with a proportional band of 10ºC and a set-point of 
100ºC would have an output of 100% up to 90ºC, 50% at 95ºC 
and 10% at 99ºC. If the temperature overshoots the set-point 
value, the heating power would be cut back further. 
Proportional only control can provide a stable process 
temperature but there will always be an error between the 
required set-point and the actual process temperature. 
 
Integral (Reset) 
The error is integrated (averaged) over a period of time, and 
then multiplied by a constant I, and added to the current 
control output. Here I represents, the steady state error of the 
system and will remove set-point / measured value errors. 
For many applications Proportional + Integral control will be 
satisfactory with good stability and at the desired set-point. 
 
Derivative (Rate) 
The rate of change of the error is calculated with respect to 
time, multiplied by another constant D, and added to the 
output. The derivative term is used to determine a controller's 
response to a change or disturbance of the process 
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temperature (e.g. opening an oven door). The larger the 
derivative term, the more rapidly the controller will respond 
to changes in the process value. 
 
Tuning of PID Controller 
The parameters P, I and D need to be "tuned" to suit the 
dynamics of the process being controlled. Any of the terms 
described above can cause the process to be unstable, or very 
slow to control, if not correctly set. These days temperature 
control using digital PID controllers have automatic auto-
tuned functions. During the auto-tuning period, a PID 
controller controls the power to the process and measures the 
rate of change, overshoot and response time of the plant. This 
is often based on the Zeigler-Nichols method of calculating 
controller term values. Once the auto-tune period is completed 
the P, I &D values are stored and used as the PID controller. 
 
3  REVIEWS    
There is a growing demand of PID in diverse application 
areas, such as Plant Control, Flow Control, Speed Control, 
Navigation etc.   
N. Hohenbichler et al. Presented a “Synthesis of Robust PID 
Controllers For Time Delay System”. This research uses the 
“Parameter Space Approach”. International Research Journal 
of Engineering and Technology (IRJET).  
Yifei YANG et al. Presented  a  Robust  Stability  Regions  of  
PID  Parameters  for  Uncertainty  Systems with Time  Delay  
Using  D-partition  Technique.  
Takaaki Hagiwara et al.  In his paper he provided a method 
for uncertain time delayed plants that stabilize the modified 
PID controller at a great extent. It creates the time delay plant 
stable and find reliable values of P, I and D parameters that do 
not depends each other. It also gives heat flow experimental 
result for illustrating this method.   
P. V. Gopi Krishna Rao et al. Here the tuning method given is 
Model based. For robust operation of controller a method 
named IMC-PID (Internal Model Control tuning method) is 
used. First Order plus Delay Time (FOPDT) model can easily 
characterize the process dynamics for implementing the IMC 
in large industrial applications.   
Karim Saadaoui et al. Another class of stabilized time delay 
system is presented in this paper. Many physical applications 
can use this method that may be locating any ship or other 
under water vehicle. Linear time invariant delay free systems 
can be modelled with this proposed method. 
 
4  METHODOLOGY 
Block diagram below represents a control system with a closed 
loop consisting of a controller and a process or plant in the 
absence of any uncertainty and time delay, or we can say in 
ideal condition. Here Gp(s) shows the nominal plant and K(s) 
is the PID controller. r(s) and y(s) are input signal and output 
signal respectively. The input to the system is the “set- point” 
i.e. the desired output. The input given to the controller is the 
error value that we earlier calculated. 
 

 
 
A PID controller as name suggests consists three elements 
namely a proportional element, an integral element and a 
derivative element, all three connected in parallel. All of them 
take error as input Kp, Ki and Kd are the gains of P, I, D 
elements respectively. 
 

 
 
 The synthesis step is extended to time delay systems, but 
important results for the practical application are still missing. 
Also, the analysis step is not developed in the literature and 
results have not been compared with existing tuning methods. 
 

 
 
Now, we will discuss the mathematical formulations that are 
most vital in order to obtain the set of PID controller gains that 
will enable us to obtain the nominal stability boundary and 
robust stability region for an arbitrary order perturbed plant 
with additive uncertainty, while ensuring closed loop stability. 

                      
A SISO and linear time invariant (LTI) system with additive 
uncertainty is shown. Here Gp(s) is the nominal plant, K(s) is 
the PID controller, and WA(s) is the additive weight.  The 
input signal and the weighted output signal are r(s) and y(s) 
respectively. 
In Figure, G∆(s) represents the perturbed plant which includes 
∆A(s), which is any stable transfer function such that 

. 
 
 
 
 
 
 
In the frequency domain we can represent these transfer 
functions as,                  
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 In order to achieve robust stability for the perturbed system, 
we want to find all PID controller gains that stabilize the 
closed loop system for the entire range of uncertainties. This 
goal can be achieved if the nominal system is stable and the 
robust stability constraint, 
 
                 
 
is satisfied, where S(jω) is the sensitivity function and  
 . 
Here shows the region of convergence or boundary condition 
for controller beyond that the controller cannot operate 
correctly or controller fails. 
 
PROBLEM FORMULATION 
Consider a single loop PID controller and a linear time delay 
system as shown in figure, given by the transfer functions: 
 
 
 
 
 
 
 
 
 
In which, k = ( )T are the controller parameters. (TR 
confirms feasibility of the controller and filters noise v; it is 
assumed to be fixed prior to the controller design, e.g. by 
adding a non-dominant pole to R(s, q)). The unknown but 
constant plant parameters are the dead time L > 0 and the 
parameters in the vector q. They lie in an operation domain: 
 
 
 
 
 
The problem may arise in designing a robust PID controller is 
to find a set of controller parameters k = k*, that meets the 
specification for all values of (L, q)T  Q. Specifications can be 
assumed in the form of Hurwitz stability (all the roots of the 
characteristic function are situated in the open left half plane 
(LHP)) and σ-stability (all roots have a real part smaller then a 
real number ). The characteristic function of the loop in Fig. 
 
 
 
 
 
Including polynomials are, 
 
 
 
 
With  , belongs to the class of quasi 
polynomials due to the dead time. (Note that (q) = 0 for 
basic case of a PID controller. However, later a  may 
appear through transformations.) The principal term condition 
requires for Hurwitz stability that in the case of PID control 

 the degrees fulfil  n  m+2. In the sequel we treat only 
this case (i.e. we assume a proper A(s, q) / R(s, q) for . 
 
PARAMETER SPACE APPROACH 
The parameter space approach can be used to solve the 
problem in two main steps. 
 
The controller synthesis step:  We compute the stable (either 
Hurwitz or σ-stable) region in the space of controller 
parameters k for several representatives (L*, q*)T out of Q 
(usually the vertices). A candidate for a robust controller  is 
chosen from the intersection of stable regions. This controller 
satisfies the specification for the representatives. 
 
The second step, 
The control loop analysis, is applied to test the robust stability 
for the continuum of all values in Q. Now we compute the 
stable region in the space of plant parameters (L, q)T with 
fixed controller k*. If Q lies entirely in the stable region, then a 
solution of the problem is found. The calculation of a Hurwitz 
stable region in a parameter space (either k or (L, q)T ) is based 
on the fact that the roots of the quasi polynomial with 
continuous coefficient functions ai (q), bi (q) do not jump 
when the parameters are changed continuously. Thus, a stable 
quasi polynomial, whose roots all lie in the LHP, becomes 
unstable if and only if at least one root crosses the imaginary 
axis. The parameter values of the root crossings form the 
stability boundaries in the parameter space, which can be 
classified into three cases: the real root boundary (RRB), where 
a root crosses the imaginary axes at the origin (substitute s = 0 
in the quasi polynomial), the infinite root boundary (IRB), 
where a root leaves the LHP at infinity (set |s|→ ∞) and the 
complex root boundary (CRB), where a pair of conjugate 
complex roots crosses the imaginary axes (substitute |s| = j 
and sweep over all real ꙍ> 0). These stability bo undaries 
separate different regions in the parameter space. To classify a 
region as Hurwitz stable it suffices to prove stability for one 
inner test point (e.g. by the Nyquist criterion). 
 
CONTROLLER DESIGN ALGORITHM 
The proposed controller design procedure is summarized in 
the following steps: 
1. Specify the maximum real part σ from closed-loop settling 
time requirements. 
2. Compute the σ-stable regions in controller parameter space 
for representatives (usually the vertices) of the Q-domain. 
3. Determine the intersection of the σ-stable regions. 
4. Choose a candidate controller out of the intersection. 
5. Compute the σ-stable region in plant parameter space for 
the candidate controller. 
6. If the Q-domain lies entirely in the σ-stable region, then the 
problem is solved. σ-stability can be reduced to the Hurwitz 
case by the substitution s = v + which leads to a 
transformation in parameters and polynomials. So Hurwitz 
stability is considered first in the next paragraphs.  
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CONTROLLER SYNTHESIS 
For each fixed representative (L*, q*)T the Hurwitz stability 
boundaries of  in the k-space are determined. The RRB turns 
out to be simply a straight line given by the equation:  
 
                             P(0, k) = 𝐾𝐾𝐼𝐼𝐴𝐴0+ 𝐵𝐵0=0      ↔ 𝐾𝐾𝐼𝐼=−𝑏𝑏0𝑎𝑎0 
                 (In the basic case we have = 0 and the RRB is  = 0.) 
 
More theoretical difficulties arise when calculating the IRB. 
Quasi polynomials possess an infinite number of  roots, which 
can not be calculated analytically in the general case. 
However, the asymptotic location of roots far from the origin. 
It turns out that infinite root boundaries only exist, if the 
degree equation n = m + 2 is fulfilled (in case of .). These 
are two straight lines 
 

 
The calculation of the CRB starts analog to the delay free case 
of polynomials. The root condition P(j, k) = 0 can be separated 
into a system of two equations for real and imaginary part. 
 
 
 
 
 
 
where Ñ(j ) = B(j )  and R, I denote the real and 
imaginary parts of A, Ñ  and P at (j ). Clearly, the matrix 
multiplying ( T is singular. Thus, the key idea is to fix  
= * and to evaluate the CRB in the ( , ) –plane. A solution 
exists and only exists for the real zeros  of 
 
 
 
 
 
 
The zeros of g( ) are called singular frequencies. For each i 
appears a straight line as CRB in the ( ,  )-plane, ruled by the 
equation. 
 

   + ( ),  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure: Function  ( ) (solid), its limit function (dashed), 
singular frequencies for  = 1 (x-marks) and stabilizing  -
interval (dash-dotted) of (s). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure: Stability boundaries in ( )-p lane for  = 1 of  

(s). The side of the lines with more unstable poles is shaded. 
 
Where ( ) can be easily determined. Thus, the stability 
boundaries RRB, IRB and CRB are straight lines in the ( )-
plane and partition the plane into convex polygons. 
(Additionally, for each boundary line the side can be 
determined which possesses the lower number of stable 
poles.) The singular frequencies may be determined by a 
graph of 
 
 
 
Graphically, the singular frequencies for a fixed are the 
abscissa values of the intersections between the ( )-plot and 
the ( = )-line. Due to the dead time the number of singular 
frequencies is infinite. Algorithms for the automatic 
calculation of the singular frequencies can be found. The 
function ( ) and the resulting boundaries in the ( )-
plane for a fixed = 1 are demonstrated for the example 
system (with ideal PID controller  = 0) 
 
 
 
 

PID design using σ-stability 
The concept of σ -stability can be used to speed up the 
transient responses robustly. Concerning the synthesis step, 
this case can be reduced to the Hurwitz case by substituting s 
= v + . Following transformations result 
 
 
 
 
 
 
Following the parameter space approach presented in section, 
the smallest possible value for  is determined for a given 
system and an operation domain, s. t. the intersection of the 
stable regions belonging to the vertices of Q is not empty. This 

 is approximated by an iterative approach: Beginning with 
zero  is stepwise reduced and the function is plotted 
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for each vertex, until the work hypothesis reveals that there is 
no interval of that stabilizes simultaneously all vertices. 
With the last  having such a interval, the stable k-regions are 
computed for all vertices, and a controller is taken out of the 
intersecting region. The analysis step can be reduced to the 
Hurwitz case, if the second parameter q enters in form of a dc-
gain into the quasi polynomial. 
In that case, the transformations are 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure: Step responses of PID and IMC controlled loop of 

(s, L) for nominal, maximal and minimal L. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure: Intersection ( ) of the -stable regions ( =−0.05) of the 
vertices of  for (s, L, K) and tuning rule controllers. The 
tuning rules are sorted by the settling time after a reference 
step for the nominal plant. 
 
CONCLUSION 
The parameter space approach offers convincing results in the 
synthesis of robust PID controllers for time delay systems. The 

modified tuning method is systematic, universal and 
transparent and leads to superior or similar results than 
literature examples.  
 
 Exact stability (Hurwitz or σ-stability) regions can be 
determined in the space of controller and plant parameters 
while treating the dead time without approximation. 
  The development of an interactive graphical software 
package based on the stated algorithm  seems very promising 
to be a helpful tool in daily engineer’s work. So an engineer 
would be  able to re-tune the huge amount of existing PID 
loops at low cost in industry. This PID controller method can 
improve the relative stability and improves the steady state for 
a system . The simulation result can be observed as 
graphically as well as the related values. By applying some 
variation in algorithm the robust PID controller has made the 
system   stabilized    through various types of delay present in 
the system. The robustness of the controller is the major 
advantage and it guarantees the robustness of system with 
respect to plant communication variation and disturbance 
caused by the external factors.                   
 The simulation result shows the controller gives good time 
response as well as reduces the delay time. PID controller 
receives the sensor information or transmits its output 
through the communication network. 
 This PID controller method can improve the relative stability 
and improves the steady state. The simulation result can be 
viewed as graphically as well as the related values. 
 
FUTURE SCOPE 
Second-order integrating processes with time delay processes 
can be extend by using the analytical design method of PID 
controller. 
The other methods can be developed for PID controllers by 
using  H- infinity optimal criterion that can be applicable  in 
chemical or industrial second-order plants that may or may 
not have time delays. 
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